Models and Peterson's
Algorithm

This is Peterson's algorithm:

thread t_{0}	thread t_{1}		
while (true) \{	while (true) \{		
// entry protocol	// entry protocol		
enter $[0]=$ true;	enter[1] = true;		
yield $=0$;	yield = 1;		
await (!enter[1]	await (!enter[0]		
\|	yield ! = 0);	\|	yield != 1);
critical section \{ ... \}	critical section \{ ... \}		
// exit protocol	// exit protocol		
enter[0] = false;	enter[1] = false;		
\}	\}		

The successors of \langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter[1] $=T\rangle$ are:

1. The t_{0} successor is
\langle yield $=0, \triangleright 3$, enter $[0]=F, \triangleright 14$, enter $[1]=T\rangle$.
2. The t_{0} successor is
\langle yield $=0, \triangleright 8$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$.
3. The t_{1} successor is
\langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 15$, enter $[1]=T\rangle$.
4. There is no t_{1} successor.

This is Peterson's algorithm:

The successors of \langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$ are:

1. The t_{0} successor is
\langle yield $=0, \triangleright 3$, enter $[0]=F, \triangleright 14$, enter $[1]=T\rangle$.
2. The t_{0} successor is

$$
\langle y \text { yield }=0, \triangleright 8, \text { enter }[0]=T, \triangleright 14, \text { enter }[1]=T\rangle .
$$

3. The t_{1} successor is

$$
\langle y \text { yield }=0, \triangleright 6, \text { enter }[0]=T, \triangleright 15, \text { enter }[1]=T\rangle .
$$

4. There is no t_{1} successor.

How can the t_{1} successor of
\langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$ be
\langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 15$, enter $[1]=T\rangle$? Both threads are in their critical sections!!!

- State \langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$ does not exist.
- There is a bug in Peterson's algorithm.
- The previous slide was wrong.
- State \langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$ is never entered.

How can the t_{1} successor of
\langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$ be
\langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 15$, enter $[1]=T\rangle$? Both threads are in their critical sections!!!

- State \langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$ does not exist.
- There is a bug in Peterson's algorithm.
- The previous slide was wrong.
- State \langle yield $=0, \triangleright 6$, enter $[0]=T, \triangleright 14$, enter $[1]=T\rangle$ is never entered.

What does Peterson's algorithm achieve?

1. Mutual exclusion using only atomic reads and writes
2. Mutual exclusion and first-come-first-served fairness
3. Mutual exclusion using busy waiting
4. Mutul exclusion using test-and-set operations

What does Peterson's algorithm achieve?

1. Mutual exclusion using only atomic reads and writes
2. Mutual exclusion and first-come-first-served fairness
3. Mutual exclusion using busy waiting
4. Mutul exclusion using test-and-set operations

What properties does the following state/transition diagram show?

1. No deadlocks can occur
2. There are no race conditions
3. No starvation can occur, but deadlocks may occur
4. Neither deadlocks nor race conditions may occur

What properties does the following state/transition diagram show?

1. No deadlocks can occur
2. There are no race conditions
3. No starvation can occur, but deadlocks may occur
4. Neither deadlocks nor race conditions may occur

Which of the following are strategies to avoid deadlocks?

1. Using locks
2. Requiring that all threads acquire locks in the same order
3. Limiting the amount of concurrency
4. Using counting semaphores instead of binary semaphores

Which of the following are strategies to avoid deadlocks?

1. Using locks
2. Requiring that all threads acquire locks in the same order
3. Limiting the amount of concurrency
4. Using counting semaphores instead of binary semaphores
